## 340

# B.A./B.Sc. (Part-III) Examination, 2019 MATHEMATICS

## Paper - III

(Numerical Analysis and Programming in 'C')

Time Allowed: Three Hours | [Maximum Marks: 75]

Note: (i) Attempt all sections as per instructions.

(ii) Calculator is allowed.

### Section-A

बना विस्वनाथ शिक्षण प्रशिक्षण महाविद्यात्वरी जुल्फाबाद बछौली, बीकापुर-फैजाबाद

**Note:** Attempt **all** questions. Give answer of each question in about 50 words.  $2 \times 10 = 20$ 

- (i) What do you mean by calculus of finite differences. Give example.
  - (ii) Find the function whose first difference is  $5^{\times}$ .

**P.T.O.** 

(iv) Find the value of:

$$\frac{\Delta}{\Delta x} \Big[ 3 x^{(4)} - 2 x^{(3)} - 3 x^{(2)} + x - 5 \Big] \; .$$

(v) Show that the function given by :

$$G(t)=(1-t)^{-2}$$

is the generating function of the sequence 1, 2, 3, 4, 5,.....

(vi) Solve the difference equation

$$2y_{k+2} - 5y_{k+1} + 2y_k = 0$$

- (vii) Which of the following methods leads to tri-diagonal matrix :
  - (a) Jacobi's method
  - (b) Gass-Method

(3)

- (c) Power series method
- (d) Guen's method.

then write the only one non-tri-diagonal element of the matrix A

- (viii) Define an algorithm. What is the criteria to be fulfilled by an algorithm.
- (ix) Draw a flow chart to get the sum of two number.
- (x) What is a pointer. How can we express a pointer.

#### Section-B

**Note :** Attempt **all** question. Give answer of each question in about 200 words.  $5 \times 7 = 35$ 

340 P.T.O.

340

$$f(x) = f(0) + x\Delta f(-1) + \frac{x(x+1)}{2!} \Delta^{2} f(-2)$$

$$+ \frac{x(x+1)(x+2)}{3!} \Delta^{3} f(-3) + \dots,$$

given values for x=0, -1, -2...

OR

A third degree polynomial passes through the points (0, -1), (1, 1), (2, 1) and (3, 2). Find the polynomial.

3. Prove that:

(i) 
$$\mu^2 = 1 + \frac{\delta^2}{4}$$

(ii) 
$$\sqrt{1 + \delta^2 \mu^2} = 1 + \frac{\delta^2}{2}$$
.

4. By using Newton-Raphson Method find the root of  $x^4-x-10=0$ , which is nearer to x=2, correct to three places of decimal.

340

(5)

OR

What is a flow chart. Explain its various advantages. Also write its various symbols.

5. Derive Lagrange's formula for Unequal intervals.

OR

By means of Lagrange's formula, prove that :

$$y_1 = y_3 - .3(y_5 - y_{-3}) + .2(y_{-3} - y_{-5})$$
 approx.

6. Assuming Stirling's formula, obtain the following approximation:

$$\frac{df(x)}{dx} = \frac{2}{3} \left[ f(x+1) - f(x-1) \right] - \frac{1}{12} \left[ f(x+2) - f(x-2) \right]$$
upto third differences.

OR

Write notes on:

- (i) Arithmetic operators
- (ii) Logical operators

#### **Section-C**

Note: Attempt any two questions. Give answer 340 P.T.O.

7. In an experiment, a quantity G was measured as follows :

$$G(20) = 95.90$$

$$G(21) = 96.85$$

$$G(22) = 97.77$$

$$G(23) = 98.68$$

$$G(24) = 99.56$$

$$G(25) = 100.41$$

$$G(26) = 101.24$$

compute  $\int_{20}^{26} G(x)dx$  by Simson's rule.

8. Define Cote's number and prove that :

$$\sum_{k=0}^{n} C_k^n = 1.$$

Find the number of men getting wages be-

(7) tween Rs.10 and Rs.15 from the following table :

| Wages | Frequency                                                                                              |
|-------|--------------------------------------------------------------------------------------------------------|
| 0-10  | 9                                                                                                      |
| 10-20 | 30                                                                                                     |
| 20-30 | 35                                                                                                     |
| 30-40 | 42 हाम विकास विकास सहीति विकास सहीति विकास करोती, विकास करोती, विकास करोती विकास करोती विकास करोती है। |

- 10. How one dimensional array differs from two dimensional array?
- 11. What is an integer constant? How many types are there of integer constants.

340